↳ ITRS
↳ ITRStoIDPProof
z
Cond_eval(TRUE, x, y) → eval(x, +@z(x, y))
eval(x, y) → Cond_eval(&&(>@z(x, 0@z), >@z(x, y)), x, y)
Cond_eval(TRUE, x0, x1)
eval(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
Cond_eval(TRUE, x, y) → eval(x, +@z(x, y))
eval(x, y) → Cond_eval(&&(>@z(x, 0@z), >@z(x, y)), x, y)
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(&&(>@z(x[0], 0@z), >@z(x[0], y[0])) →* TRUE))
(1) -> (0), if ((+@z(x[1], y[1]) →* y[0])∧(x[1] →* x[0]))
Cond_eval(TRUE, x0, x1)
eval(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(&&(>@z(x[0], 0@z), >@z(x[0], y[0])) →* TRUE))
(1) -> (0), if ((+@z(x[1], y[1]) →* y[0])∧(x[1] →* x[0]))
Cond_eval(TRUE, x0, x1)
eval(x0, x1)
(1) (EVAL(x[0], y[0])≥NonInfC∧EVAL(x[0], y[0])≥COND_EVAL(&&(>@z(x[0], 0@z), >@z(x[0], y[0])), x[0], y[0])∧(UIncreasing(COND_EVAL(&&(>@z(x[0], 0@z), >@z(x[0], y[0])), x[0], y[0])), ≥))
(2) ((UIncreasing(COND_EVAL(&&(>@z(x[0], 0@z), >@z(x[0], y[0])), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL(&&(>@z(x[0], 0@z), >@z(x[0], y[0])), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(x[0], 0@z), >@z(x[0], y[0])), x[0], y[0])), ≥)∧0 ≥ 0)
(5) (0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(>@z(x[0], 0@z), >@z(x[0], y[0])), x[0], y[0])), ≥)∧0 ≥ 0∧0 = 0)
(6) (+@z(x[1], y[1])=y[0]1∧x[1]=x[0]1∧&&(>@z(x[0], 0@z), >@z(x[0], y[0]))=TRUE∧y[0]=y[1]∧x[0]=x[1] ⇒ COND_EVAL(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL(TRUE, x[1], y[1])≥EVAL(x[1], +@z(x[1], y[1]))∧(UIncreasing(EVAL(x[1], +@z(x[1], y[1]))), ≥))
(7) (>@z(x[0], 0@z)=TRUE∧>@z(x[0], y[0])=TRUE ⇒ COND_EVAL(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0])≥EVAL(x[0], +@z(x[0], y[0]))∧(UIncreasing(EVAL(x[1], +@z(x[1], y[1]))), ≥))
(8) (x[0] + -1 ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[1], +@z(x[1], y[1]))), ≥)∧(-1)Bound + (-1)y[0] + x[0] ≥ 0∧-1 + x[0] ≥ 0)
(9) (x[0] + -1 ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[1], +@z(x[1], y[1]))), ≥)∧(-1)Bound + (-1)y[0] + x[0] ≥ 0∧-1 + x[0] ≥ 0)
(10) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -1 ≥ 0 ⇒ (UIncreasing(EVAL(x[1], +@z(x[1], y[1]))), ≥)∧-1 + x[0] ≥ 0∧(-1)Bound + (-1)y[0] + x[0] ≥ 0)
(11) (x[0] + (-1)y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[1], +@z(x[1], y[1]))), ≥)∧x[0] ≥ 0∧1 + (-1)Bound + (-1)y[0] + x[0] ≥ 0)
(12) (x[0] + (-1)y[0] ≥ 0∧x[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[1], +@z(x[1], y[1]))), ≥)∧x[0] ≥ 0∧1 + (-1)Bound + (-1)y[0] + x[0] ≥ 0)
(13) (x[0] + y[0] ≥ 0∧x[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[1], +@z(x[1], y[1]))), ≥)∧x[0] ≥ 0∧1 + (-1)Bound + y[0] + x[0] ≥ 0)
(14) (x[0] ≥ 0∧y[0] + x[0] ≥ 0∧y[0] ≥ 0 ⇒ (UIncreasing(EVAL(x[1], +@z(x[1], y[1]))), ≥)∧y[0] + x[0] ≥ 0∧1 + (-1)Bound + x[0] ≥ 0)
POL(0@z) = 0
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(COND_EVAL(x1, x2, x3)) = -1 + (-1)x3 + x2 + (-1)x1
POL(EVAL(x1, x2)) = 1 + (-1)x2 + x1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
EVAL(x[0], y[0]) → COND_EVAL(&&(>@z(x[0], 0@z), >@z(x[0], y[0])), x[0], y[0])
COND_EVAL(TRUE, x[1], y[1]) → EVAL(x[1], +@z(x[1], y[1]))
COND_EVAL(TRUE, x[1], y[1]) → EVAL(x[1], +@z(x[1], y[1]))
&&(FALSE, FALSE)1 ↔ FALSE1
&&(TRUE, TRUE)1 ↔ TRUE1
+@z1 ↔
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
Cond_eval(TRUE, x0, x1)
eval(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
Cond_eval(TRUE, x0, x1)
eval(x0, x1)